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Abstract—The accelerating threat of quantum computing poses
a critical challenge to the cryptographic foundations of DevOps
pipelines that rely on RSA and ECDSA for code signing,
SSH, and TLS security. This study examines the susceptibility
of continuous integration and deployment (CI/CD) systems to
“harvest now, decrypt later” attacks by developing and executing
a quantum-safe DevOps pipeline. The suggested solution uses
NIST-standardized post-quantum cryptographic algorithms, such
as Falcon and Dilithium for digital signatures and Kyber for
key encapsulation, in Docker-based CI/CD workflows that are
automated by GitHub Actions. Prometheus was used to collect
real-time performance data, and Grafana dashboards were used
to show it so that latency, CPU usage, and verification accuracy
could be measured. Empirical benchmarking demonstrated that
Falcon-512 attained verification speeds comparable to RSA (0.48
ms versus 0.52 ms) and sustained dependable signing perfor-
mance with merely a 10–15% latency overhead, confirming the
operational viability of PQC in automated settings. The study
demonstrates that quantum-resistant security can be integrated
seamlessly into existing DevOps infrastructures, providing a
reproducible framework for organizations transitioning toward
post-quantum cryptographic readiness.

Index Terms—Post-Quantum Cryptography (PQC), Quantum-
Safe DevSecOps, Continuous Integration and Deployment
(CI/CD), Lattice-Based Digital Signatures (Falcon, Dilithium),
Performance Evaluation and Benchmarking

I. INTRODUCTION

Quantum computing has rapidly transitioned from a the-
oretical model to an emerging practical capability, posing
an immediate threat to conventional cryptographic primitives
that safeguard modern digital infrastructure. Once scalable
quantum computers become available, Shor’s algorithm will
efficiently factor large integers and compute discrete loga-
rithms, thereby breaking RSA and ECDSA—the backbone
of today’s authentication, signing, and secure communication
systems. Such vulnerabilities directly endanger the integrity
of software supply chains, automated deployment workflows,
and DevOps environments that rely on these cryptographic
mechanisms.

Modern software engineering heavily depends on Continu-
ous Integration and Continuous Deployment (CI/CD) pipelines

that automate code building, testing, and delivery across dis-
tributed systems. These automation workflows employ cryp-
tographic techniques at every stage—Git commit signing,
Docker image verification, and TLS-based host authentica-
tion. Any compromise in these layers could allow mali-
cious code injection or unauthorized image substitution within
the deployment process. Consequently, embedding quantum-
resistant algorithms within DevSecOps practices has become
critical to ensure long-term resilience against quantum-enabled
adversaries.

Post-Quantum Cryptography (PQC) provides an effective
countermeasure by adopting lattice-based schemes that re-
main secure even in the presence of quantum computers. In
2024, the U.S. National Institute of Standards and Technol-
ogy (NIST) standardized Kyber for key encapsulation and
Falcon and Dilithium for digital signatures. These algorithms
offer strong quantum resistance while maintaining acceptable
computational efficiency. However, existing studies largely
focus on algorithmic benchmarks in isolation; comprehensive
integration and evaluation of PQC within fully automated
DevOps pipelines remain largely unexplored.

To address this gap, this work presents the design and im-
plementation of a Post-Quantum Secure DevOps Pipeline
that integrates Falcon and Dilithium within containerized
CI/CD workflows and introduces an extensible design path for
future Kyber-based TLS/SSH protection. Figure 2 illustrates
the progressive integration of PQC algorithms across the
DevOps lifecycle, highlighting cryptographic functions at each
automation stage.

The primary contributions of this paper are summarized as
follows:

• A reproducible PQC-enabled CI/CD pipeline that inte-
grates Falcon and Dilithium within Docker and GitHub
Actions environments.

• Real-time benchmarking and visualization of quantum-
safe signing and verification using Prometheus and
Grafana.

• Empirical validation demonstrating minimal ( 10–15 %)
latency overhead while achieving complete cryptographic



Classical CI/CD Pipeline
RSA / ECDSA → SSH, Git, Docker, TLS

Vulnerable to Quantum Attacks

Transitional / Hybrid Cryptography
RSA + PQC (Hybrid TLS)
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Falcon / Dilithium / Kyber
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Fig. 1. Evolution of cryptographic protection within DevOps pipelines.
The proposed Post-Quantum Secure DevOps Pipeline replaces vulnerable
RSA/ECDSA components with NIST-standardized PQC algorithms for SSH,
Git, Docker signing, and TLS transport.
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Fig. 2. Post-quantum cryptography integration points in a continuous De-
vOps pipeline. Each stage replaces classical RSA/ECDSA mechanisms with
lattice-based PQC algorithms to secure commits, images, and communication
channels.

quantum resistance.
• Open-source release of all scripts and dashboards to

encourage further research and adoption of quantum-safe
DevOps frameworks.

The remainder of this paper is organized as follows: Section
II reviews prior work on PQC integration and secure software
pipelines. Section III details the system architecture and im-
plementation methodology. Section IV presents experimental
results and performance analysis. Section V discusses impli-
cations and future extensions, and Section VI concludes the
paper.

II. BACKGROUND AND RELATED WORK

There has been research into how to use Post-Quantum
Cryptography (PQC) in automated DevOps and CI/CD envi-
ronments, but there is still no, single benchmarked implemen-
tation. The first work on cryptographic discovery frameworks
looked at continuous-integration repositories to find the use
of quantum-vulnerable algorithms like RSA and ECDSA.
Although these initiatives were beneficial for awareness and
risk assessment, they predominantly concentrated on detec-
tion rather than on effective remediation or substitution with
quantum-resistant mechanisms. The present study transcends
this limitation by integrating post-quantum algorithms di-
rectly into the automation workflow, thereby facilitating func-
tional cryptographic substitution and verification within a live
pipeline.

Later experimental studies focused on the basic performance
of PQC algorithms like Kyber and Dilithium, showing that
they could work in a controlled setting. Nonetheless, these
studies did not encompass orchestration complexity, interop-
erability, or automation overheads present in actual CI/CD
systems. This work broadens this view by adding lattice-based
algorithms, namely Falcon and Dilithium, to the build, signing,
and deployment stages of containers. It also includes real-time
monitoring with Prometheus and Grafana dashboards. This
gives both performance metrics and operational validation for
all automated cycles.

Full surveys of cryptographic libraries have also looked
at how ready platforms like OpenSSL and wolfSSL are to
work with PQC primitives. These analyses found gaps in the
maturity of tools and compliance with standards, even though
they confirmed that there was a lot of interest. The current
implementation addresses these deficiencies via the Open
Quantum Safe (OQS) provider, facilitating comprehensive
integration of quantum-safe signing, verification, and secure
transport. Prior studies collectively established feasibility; the
proposed system, however, exhibits full-scale reproducibility,
automation compatibility, and measurable performance bench-
marking within a quantum-secure DevSecOps framework.

III. METHODOLOGY AND SYSTEM DESIGN

The proposed Post-Quantum Secure DevOps Pipeline is
an operational framework that incorporates lattice-based Post-
Quantum Cryptography (PQC) primitives into all critical com-
ponents of a Continuous Integration and Continuous Deploy-



ment (CI/CD) workflow. The goal is to make the access, build,
deployment, and monitoring layers quantum-resistant without
affecting automation efficiency. The system architecture fol-
lows a modular DevSecOps design emphasizing crypto-agility,
reproducibility, and measurable performance.

A. System Architecture Overview

The architecture consists of four main layers: Access,
Source Control, Build & Deployment, and Monitoring
& Benchmarking. Each layer integrates quantum-safe al-
gorithms and toolchains that enhance system resilience. The
complete architecture of the Quantum-Safe DevOps Pipeline
is illustrated in Fig. 3.

Fig. 3. System Architecture of the Post-Quantum Secure DevOps Pipeline.
The layered architecture integrates Falcon, Dilithium, and Kyber algorithms
for SSH, signing, TLS communication, and monitoring workflows.

Each layer operates as follows:
1) Access Layer (Quantum-Safe SSH): This layer en-

sures secure access between developer nodes and
servers through OQS-OpenSSH, which supports PQC
algorithms such as Falcon-512 and Dilithium-3 for
host and user authentication. Key generation com-
mands (e.g., ssh-keygen -t falcon512) produce
quantum-resistant key pairs that replace classical RSA
or ECDSA keys. These keys mitigate the risk of Shor’s
algorithm compromising authentication in future quan-
tum computers.

2) Source Control Layer (PQC-Signed Commits): Code
commits in Git are signed using PQC-enabled OpenSSL
integrated with the Open Quantum Safe (OQS) provider.
The signing process employs Falcon and Dilithium
digital signature schemes to ensure authenticity and
non-repudiation of all repository changes. The OQS-
OpenSSL module integrates these operations transpar-
ently within developer workflows by embedding verifi-
able PQC signatures in each commit.

3) Build and Deployment Layer (Container Signing
and CI/CD Automation): The CI/CD pipeline, exe-
cuted via GitHub Actions, automates build, sign, and
deploy stages using PQC keys. The secure key directory
holds post-quantum private keys used to sign Docker
images through cosign. The Kyber (ML-KEM) algo-
rithm ensures quantum-safe key encapsulation during
TLS connections between the CI server and Docker
registry. This preserves both artifact integrity (via
Dilithium/Falcon) and data confidentiality (via Kyber)

during automated deployments. Verification scripts such
as pqc_verify_openssl.sh confirm the authentic-
ity of artifacts before deployment continues.

4) Monitoring and Benchmarking Layer
(Prometheus–Grafana Stack): A dedicated monitoring
subsystem is implemented using Prometheus for
telemetry collection and Grafana for visualization.
Prometheus exporters record metrics such as signing
latency, verification success rate, CPU utilization, and
handshake response time. Dashboards such as the
Quantum Performance Intelligence Dashboard compare
classical RSA and PQC algorithms under identical
conditions. Results show that Falcon introduces modest
latency (approximately 2.50 seconds compared to 1.49
seconds for RSA), while maintaining stability and
production readiness.

B. Data Flow and Process Logic

The pipeline begins when a developer commits code signed
with a Falcon or Dilithium key. GitHub Actions automatically
triggers the CI workflow, which executes build and signing
scripts. PQC keys are used to sign artifacts, and OQS-
OpenSSL is used to verify them. Upon successful validation,
the Docker image is pushed to the secure registry via a Kyber-
protected TLS channel. Throughout the process, Prometheus
exporters collect real-time performance and security data,
which Grafana visualizes for post-deployment analysis.

This continuous observability allows engineers to detect
latency issues, CPU overheads, and verification delays in real
time, providing quantitative insights into PQC’s operational
impact. The integration thus extends beyond cryptographic
compliance, forming an adaptive and self-auditing security
architecture.

C. Algorithms and Cryptographic Components

• Kyber (ML-KEM): Used for key exchange and transport
encryption, enabling quantum-resistant communication
between nodes and registries.

• Dilithium (ML-DSA): Serves as the primary digital sig-
nature algorithm for artifact signing due to its robustness
and compliance with NIST FIPS 204.

• Falcon (FN-DSA): Employed for performance bench-
marking; provides compact signatures and fast verifica-
tion suited for high-frequency automation tasks.

Each algorithm is accessed through the OQS provider
module, ensuring uniform integration across OpenSSL-based
applications. The modular design supports crypto-agility, en-
abling future replacement or hybridization of algorithms as
new standards evolve.

D. Experimental Deployment

The system runs on Ubuntu 22.04 LTS and employs
Docker, GitHub Actions, and a Prometheus–Grafana mon-
itoring stack. Configuration files such as openssl.cnf,
prometheus.yml, and grafana-dashboard.json
define operational parameters. All cryptographic libraries —



liboqs, oqs-openssl, and oqs-openssh — are compiled from
official Open Quantum Safe repositories to ensure repro-
ducibility.

E. Architecture Visualization and Parameters

Figure Description: Fig. 3 presents the layered architecture,
spanning from the developer workstation to the monitoring
stack. It demonstrates how Falcon, Dilithium, and Kyber algo-
rithms secure each pipeline stage through PQC-enabled SSH,
signing, TLS communication, and real-time observability.

TABLE I
CRYPTOGRAPHIC ALGORITHMS AND OPERATIONAL PARAMETERS USED

IN THE PQC-ENABLED DEVOPS PIPELINE

Algorithm Function Key Size (B) Sig./CT Size (B) Integration Layer Avg. Latency
Kyber-768 Key Encapsulation

(KEM)
1,184 1,088 TLS / SSH 1.8 s

Dilithium-3 Digital Signature
(Primary)

1,952 3,293 Git / Docker 2.4 s

Falcon-512 Digital Signature
(Alt.)

897 666 Verification /
Benchmark

2.5 s

Table Description: Table I summarizes the operational param-
eters for each PQC algorithm used in the pipeline, including
function, key and signature sizes, integration layers, and aver-
age latency. These measurements support the system efficiency
analysis discussed in Section IV.
Table Description: Table I summarizes the operational param-
eters for each PQC algorithm used in the pipeline, including
function, key and signature sizes, integration layers, and aver-
age latency. These measurements support the system efficiency
analysis discussed in Section IV.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

All experiments were conducted in a Linux-based envi-
ronment representative of real-world CI/CD workflows. The
configuration comprised Ubuntu 22.04 LTS, 4 vCPU and
8 GB RAM, Docker 24.x, and GitHub Actions runners.
The cryptographic stack implemented OpenSSL 3.x + OQS
provider with Falcon-512, Dilithium-3, and Kyber-768; OQS-
OpenSSH for post-quantum authentication; and cosign for
PQC-based container signing. Monitoring and telemetry col-
lection used Prometheus 2.x and Grafana 10.x. The repository
and workflow scripts are available publicly at: https://github.
com/Vishnu2707/quantum-safe-devops-pipeline.

B. Evaluation Metrics

Performance was evaluated across five dimensions: (1) end-
to-end CI latency (commit → verified deployment), (2) per-
operation signing / verification latency, (3) TLS/SSH hand-
shake latency, (4) CPU utilization, and (5) policy-compliance
success rate. These metrics were continuously recorded by
Prometheus exporters and visualized in Grafana dashboards.

C. Baseline Systems

Three pipelines were benchmarked for comparative analy-
sis:

• Baseline A – Classical: standard RSA / ECDSA with
conventional TLS.

• Baseline B – Naı̈ve PQC: serial post-quantum signing
without optimization or monitoring.

• Proposed Pipeline: fully integrated Falcon /
Dilithium signing, Kyber-TLS key exchange, parallel
signature verification, build-cache optimization, and
Prometheus–Grafana observability.

D. Quantitative Results

Across 50 pipeline executions, the proposed system
achieved an average CI latency of 79.3 s, outperforming
Baseline A (92.3 s) by 14.1 % and Baseline B (108.4 s) by 26.8
%. CPU utilization averaged 49.2 % (proposed), 44.0 % (A),
and 56.7 % (B). Micro-benchmarks reported mean verification
times of 0.48 ms (Falcon-512) and 0.63 ms (Dilithium-3) with
signature sizes 666 B and 3.293 KB, respectively. RSA-2048
verification measured 0.52 ms for 256 B signatures. These
figures show that PQC introduces negligible signing overhead
once integrated efficiently.

TABLE II
END-TO-END CI METRICS ACROSS METHODS (50-RUN AVERAGE)

Method CI Latency (s) Verify (ms) CPU (%) Signature Size Compliance (%)
Proposed Pipeline 79.3 0.48 / 0.63 49.2 666 B / 3.293 KB 100
Baseline A (Classical) 92.3 0.52 (RSA) 44.0 256 B 0
Baseline B (Naı̈ve PQC) 108.4 0.48 / 0.63 56.7 666 B / 3.293 KB 94

E. Visual Results and Analysis

Figure 4 shows the Prometheus Monitoring Dashboard,
which continuously captured cryptographic latency and CPU
utilization during active CI runs. These real-time curves con-
firm that the proposed pipeline maintains steady resource
usage without spiking during Falcon and Dilithium verification
phases.

Fig. 4. Prometheus Monitoring Dashboard—real-time cryptographic latency,
handshake time, and CPU load for the PQC-enabled pipeline.

The Quantum Performance Intelligence Dashboard (Fig. 5)
compares RSA and Falcon under identical CI workloads.



Falcon exhibits a higher instantaneous CPU usage but com-
pletes cryptographic operations with shorter wall-clock time,
explaining the 14–27 % end-to-end gain shown in Table II.

Fig. 5. Quantum Performance Intelligence Dashboard—Falcon PQC vs RSA
metrics showing average latency and resource utilization trends.

Figure 6 presents the System Resource Dashboard, where
the PQC latency trace remains stable even during peak CPU
cycles, indicating no memory thrashing or queue delays.

Fig. 6. System Resource Dashboard—PQC latency, CPU usage, and system
health index under sustained CI workloads.

The Quantum Health Dashboard (Fig. 7) aggregates
anomaly alerts and uptime metrics, confirming that the Falcon-
based nodes sustain consistent verification throughput without
dropped sessions or re-queue events.

Comprehensive comparative insights are captured in Fig. 8,
which overlays latency, throughput, and CPU metrics for
both classical and post-quantum configurations. The figure
clearly shows consistent throughput even when PQC key sizes
increase computational load.

A quantitative comparison of efficiency ratios is provided in
Fig. 9, which plots latency, efficiency, and throughput as nor-
malized bars. The Falcon-enabled design achieves an overall
performance improvement of 26.8 % over Baseline B and 14.1
% over Baseline A.

Finally, Fig. 10 consolidates these findings into a summary
dashboard reporting the observed latency ratios, CPU effi-
ciency, and compliance rates across all cryptographic modes.

Fig. 7. Quantum Health Dashboard—system stability, PQC latency, and alert
indices demonstrating continuous operational integrity.

Fig. 8. Comprehensive Performance Dashboard—aggregated latency, through-
put, and CPU metrics contrasting classical and PQC pipelines.

F. Discussion and Trade-off Analysis

The collected metrics and dashboards demonstrate that
PQC integration, when engineered holistically, does not
impede automation cadence. Falcon-512’s compact signa-
tures yield faster verification and reduced network overhead,
while Dilithium-3 provides robust long-term signing security.
Kyber-768 ensures efficient, quantum-safe key exchange for
TLS/SSH. Although lattice-based algorithms increase key and
signature sizes, their predictable computational cost enables
deterministic pipeline timing—a critical factor for DevSecOps
reliability. The observed 26–27 % improvement over naı̈ve



Fig. 9. Comparative Metrics—normalized latency, efficiency, and throughput.
The optimized PQC pipeline consistently outperforms both baselines.

Fig. 10. Quantum-Safe DevOps Performance Summary Report—aggregate
latency, CPU efficiency, and compliance ratios for all test modes.

PQC integration underscores that architectural optimization,
rather than algorithmic speed alone, defines post-quantum
readiness. Overall, the results confirm that the proposed
pipeline achieves quantum resistance with negligible per-
formance penalty, satisfying both operational efficiency and
future-proof security requirements.

V. CONCLUSION AND FUTURE WORK

This study presented the design and implementation of a
fully operational Post-Quantum Secure DevOps Pipeline that
integrates Falcon, Dilithium, and Kyber within containerized
CI/CD workflows. The system demonstrated that quantum-
resistant cryptographic primitives can be seamlessly adopted
in automated environments using OQS-OpenSSH, OpenSSL,
and GitHub Actions. Empirical evaluation confirmed that PQC
integration introduces only modest latency (≈10–15%) while
maintaining end-to-end automation stability and compatibility
with existing DevSecOps tools. The results validate that post-
quantum security can coexist with practical software delivery
pipelines without sacrificing efficiency.

Future research will pursue the following directions:

1) Scalable Multi-Node Integration: Extending the
pipeline to distributed Kubernetes clusters for multi-
node consensus, container orchestration, and parallel
verification of post-quantum signatures.

2) Quantum-Safe Network Communication: Implement-
ing Kyber-based TLS endpoints to achieve fully
quantum-resistant key exchange and encrypted commu-
nication channels between CI/CD runners and deploy-
ment servers.

3) Immutable Provenance and Auditing: Integrating
blockchain-backed audit trails to record signed artifacts,
build provenance, and cryptographic verification events,
thereby improving traceability and regulatory compli-
ance.

These enhancements will advance the maturity and scala-
bility of quantum-safe DevSecOps infrastructures.
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